If sinA+sin2A=x and cosA+COS2A=y, then
(x2 + y²). (x^2+ y2 - 3)
Answers
sinA + sin2A = x and cosA + cos2A = y
Then we have to find the value of (x² + y²)(x² + y² - 3).
solution : given sinA + sin2A = x and cosA + cos2A = y
x² + y² = (sinA + sin2A)² + (cosA + cos2A)²
= sin²A + sin²2A + 2sinAsin2A + cos²A + cos²2A + 2cosAcos2A
= (sin²A + cos²A) + (sin²2A + cos²2A) + 2sinAsin2A + 2cosAcos2A
= 1 + 1 + 2[sinAsin2A + cosAcos2A]
= 2 + 2[ sinA(2sinAcosA) + cosA(1 - 2sin²A)]
= 2 + 2[2sin²A cosA + cosA - 2sin²AcosA ]
= 2 + 2cosA
= 2(1 + cosA) .........(1)
now x² + y² - 3 = 2(1 + cosA) - 3 .......(2)
(x² + y²)(x² + y² - 3)
from equations (1) and (2) we get,
= [2(1 + cosA)] [2(1 + cosA) - 3]
= 4(1 + cosA)² - 6(1 + cosA)
= 4(1 + cos²A + 2cosA) - 6 - 6cosA
= 4 + 4cos²A + 8cosA - 6 - 6cosA
= 4cos²A + 2cosA - 2
= 2(2cos²A -1) + 2cosA
= 2cos2A + 2cosA
= 2[cosA + cos2A]
but it is given that cosA + cos2A = y
so 2[cosA + cos2A] = 2y
Therefore the value of (x² + y²)(x² + y² - 3) = 2y
Answer:
cos a =