if sinA+sinB=1/2 and cosA+cosB=5/4 so tanA+tanB=?
Answers
Step-by-step explanation:
Do you know these identities:
cos(x + y) = cos(x).cos(y) - sin(x).sin(y) ← remarkable identity (1)
cos(x - y) = cos(x).cos(y) + sin(x).sin(y) ← remarkable identity (2)
sin(x + y) = sin(x).cos(y) + cos(x).sin(y) ← remarkable identity (3)
sin(x - y) = sin(x).cos(y) - cos(x).sin(y) ← remarkable identity (4)
Given:
(1) : cos(A) + cos(B) = 1/2
(1) : sin(A) + sin(B) = 1/4
Let: A = x + y
Let: B = x - y
Then:
(1') : cos(x + y) + cos(x - y) = 1/2
(2') : sin(x + y) + sin(x - y) = 1/4
Restart with (1') and transform it into (1'')
(1') : cos(x + y) + cos(x - y) = 1/2 → using identities (1) & (2)
(1'') : [cos(x).cos(y) - sin(x).sin(y)] + [cos(x).cos(y) + sin(x).sin(y)] = 1/2
(1'') : cos(x).cos(y) - sin(x).sin(y) + cos(x).cos(y) + sin(x).sin(y) = 1/2
(1'') : 2.cos(x).cos(y) = 1/2
(1'') : cos(x).cos(y) = 1/4
Restart with (2') and transform it into (2'')
(2') : sin(x + y) + sin(x - y) = 1/4 → using identities (3) & (4)
(2'') : [sin(x).cos(y) + cos(x).sin(y)] + [sin(x).cos(y) - cos(x).sin(y)] = 1/4
(2'') : sin(x).cos(y) + cos(x).sin(y) + sin(x).cos(y) - cos(x).sin(y) = 1/4
(2'') : 2.sin(x).cos(y) = 1/4
(2'') : sin(x).cos(y) = 1/8
You calculate: (2'') / (1'')
[sin(x).cos(y)] / [cos(x).cos(y)] = (1/8) / (1/4)
sin(x)/cos(x) = (1/8) * 4
tan(x) = 1/2 ← memorize this result
Recall:
Let: A = x + y
Let: B = x - y
A + B = (x + y) + (x - y)
A + B = x + y + x - y
A + B = 2x
x = (A/2) + (B/2)
Recall the memorized result:
tan(x) = 1/2 → we've just seen that: x = (A/2) + (B/2)
tan[(A/2) + (B/2)] = 1/2
Mark as brainliest