Math, asked by MYAGNANARAYANASINGH, 11 months ago

if sinA+sinB=C,cosA+cosB=D,then value of sin(A+B)=

Answers

Answered by MaheswariS
5

\underline{\textsf{Given:}}

\mathsf{sinA+sinB=C}

\mathsf{cosA+cosB=D}

\underline{\textsf{To find:}}

\textsf{The value of}

\mathsf{sin(A+B)}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{sinA+sinB=C}

\implies\mathsf{2\,sin(\dfrac{A+B}{2})\,cos(\dfrac{A-B}{2})=C}......(1)

\mathsf{cosA+cosB=D}

\implies\mathsf{2\,cos(\dfrac{A+B}{2})\,cos(\dfrac{A-B}{2})=D}......(2)

\textsf{Divide (1) by (2)}

\mathsf{\dfrac{2\,sin(\dfrac{A+B}{2})\,cos(\dfrac{A-B}{2})}{2\,cos(\dfrac{A+B}{2})\,cos(\dfrac{A-B}{2})}=\dfrac{C}{D}}

\mathsf{\dfrac{sin(\dfrac{A+B}{2})}{cos(\dfrac{A+B}{2})}=\dfrac{C}{D}}

\mathsf{tan(\dfrac{A+B}{2})=\dfrac{C}{D}}

\textsf{We know that, the identity}

\boxed{\mathsf{sinA=\dfrac{2\,tan\frac{A}{2}}{1+tan^2\frac{A}{2}}}}

\textsf{Now}

\mathsf{sin(A+B)=\dfrac{2\,tan(\dfrac{A+B}{2})}{1+tan^2(\dfrac{A+B}{2})}}

\mathsf{sin(A+B)=\dfrac{2\,\dfrac{C}{D}}{1+(\dfrac{C}{D})^2}}

\mathsf{sin(A+B)=\dfrac{\dfrac{2C}{D}}{1+\dfrac{C^2}{D^2}}}

\mathsf{sin(A+B)=\dfrac{\dfrac{2C}{D}}{\dfrac{D^2+C^2}{D^2}}}

\mathsf{sin(A+B)=\dfrac{2C}{D}{\times}\dfrac{D^2}{D^2+C^2}}

\mathsf{sin(A+B)=\dfrac{2C}{D}{\times}\dfrac{D^2}{D^2+C^2}}

\implies\boxed{\mathsf{sin(A+B)=\dfrac{2CD}{D^2+C^2}}}

Find more:

Prove that 1-sin^2x/1+cotx-cos^2x/1+tanx=sinxcossx

https://brainly.in/question/4927186

Tan(π/4+x)-tan(π/4-x)=2tan 2x

https://brainly.in/question/10999329

Similar questions