Math, asked by anmolsingh29, 3 months ago


If sinA, sinB, cosA are in G.P., then roots of x2 + 2xcotB+1=o are always

a equal
b real
c imaginary
d greatee than 1​

Answers

Answered by yokeshps2005
15

Answer:

sina,sinb,cosa are in G.P.

∴  sin2b=sinacosa                            -------- ( 1 )

⇒  x2+2xcotb+1=0

⇒  D=(2cotb)2−4(1)(1)

          =4cot2b−1

          =4(sin2bcos2b​−1)

          =4(sin2bcos2b−sin2b​)

          =4(sin2b1−sin2b−sin2b​)

          =4(sin2b1−2sin2b​)

          =4(sin2b1−2sinacosa​)                   [ From equation ( 1) ]

          =4(sin2bsin2a+cos2a−2sinacosa​)

          =4(sin2b(sina−cosb)2​)

⇒  D=(sinb2(sina−cosa)​)2≥0

∴  Roots of given equation are real.

Step-by-step explanation:

Answered by nitu63718
4

Answer:

your answer is b) real

Step-by-step explanation:

hope it's help you

Similar questions