Math, asked by Sphurthi1921, 1 year ago

If sinA+sinB+sinC=0, show that sin3A+sin3B+sin3B+sin3C+12sinA sinB sinC=O

Answers

Answered by MaheswariS
4

\textbf{Concept:}

\text{If a+b=c=0 then }a^3+b^3+c^3=3abc

\textbf{Given:}

\text{sinA+sinB+sinC=0}

\text{Using the given concept, we get}

sin^3A+sin^3B+sin^3C=3\;sinA\;sinB\;sinC

\text{using}

\bf\;sin3A=3\;sinA-4\;sin^3A\;\implies\;sin^3A=\frac{1}{4}[3\;sinA-sin3A]

\frac{1}{4}[3\;sinA-sin3A]+\frac{1}{4}[3\;sinB-sin3B]+\frac{1}{4}[3\;sinC-sin3C]=3\;sinA\;sinB\;sinC

3\;sinA-sin3A+3\;sinB-sin3B+3\;sinC-sin3C=12\;sinA\;sinB\;sinC

3(sinA+sinB+sinC)-sin3A-sin3B-sin3C=12\;sinA\;sinB\;sinC

3(0)-sin3A-sin3B-sin3C=12\;sinA\;sinB\;sinC

-sin3A-sin3B-sin3C-12\;sinA\;sinB\;sinC=0

sin3A+sin3B+sin3C+12\;sinA\;sinB\;sinC=0

\therefore\boxed{\bf\;sin3A+sin3B+sin3C+12\;sinA\;sinB\;sinC=0}

Answered by bhpganesh27
2

Answer:

-12sinAsinBsinC

Step-by-step explanation:

Refer to the attachment given below.

Attachments:
Similar questions