if sinA+sinB=x and cosA+cosB=y then show that sin (A+B)=2xy/x^2+y^2
Answers
Answer:
Step-by-step explanation:
Given,
1) sinA + sinB = x
2) cosA + cosB = y
To Prove :-
sin(A + B) = 2xy/x² + y²
Formula Required :-
1) sinC + sinD = 2sin(C+D/2)cos(C-D/2)
2) cosC + cosD = 2cos(C+D/2)cos(C-D/2)
3) sinC/cosC = tanC
4) sin(A + B) = 2sin(A+B/2)cos(A+B/2)
5) (hypotenuse side)^2 = (ooposite side)^2 + (adjacent side)^2
Solution :-
sinA + sinB = x
[ ∴ sinC + sinD = 2sin(C+D/2)cos(C-D/2) ]
[ Let it be equation - 1]
cosA + cosB = y
[ ∴ cosC + cosD = 2cos(C+D/2)cos(C-D/2) ]
[Let it be equation - 2]
Equation - 1 divided by equation - 2 :-
Cancelling the common terms :-
→ opposite side/adjacent side = x/y
opposite side = x , adjacent side = y
After applying Pythagoras theorem we get :-
→ sin(A+B/2) = opposite side/hypotenuse side
cos(A+B/2) = adjacent side/hypotenuse side
sin(A + B) = 2sin(A+B/2)cos(A+B/2)
[ ∴ sin2A = 2sinAcosA ]
Substituting those values :-
∴ sin(A + B) = 2xy/x² + y²
Hence proved.