If sinA - tanA = p , p>0,find tanA , secA and sinA If A is acute angle.
Answers
Step-by-step explanation:
am using above right-angled triangle to find Trigonometric Identities :
From Pythagoras Theorem, we know that ,a2+b2=c2……………..(ii
Now, sin A= a/c……………………(iii)
cos A= b/c/…………………………(iv)
Adding the squares of equ (iii) and equ (iv), we get
sin2A+cos2A
=a2/c2+b2/c2
=(a2+b2)/c2————−[Use equ (ii)]
=c2/c2
=1…………………………………..(v)
Now,sec2A−tan2A
=1/cos2A−sin2A/cos2A
=(1−sin2A)/cos2A—————−[Use equ (v)]
=cos2A/cos2A=1………………….(vi)
sec2A−tan2A=1…………………..(vi)
,(secA+tanA)(secA−tanA)=1
or,p∗(secA−tanA)=1—————−[Use equ (i)]
or, (sec A - tan A)= 1/p…………………(vii)
Now adding equ (i) and equ (vii), we get:
secA+tanA+secA−tanA=p+1/p
or,secA=(p2+1)/2p……………………….(viii)
Substructing equ (i) and equ (vii), we get:
sec A+tan A - sec A + tan A = p-1/p
or,tanA=(p2−1)/2p……………………….(ix)
Deviding the equ (viii) and equ (ix), we get
secA/tanA=(p2+1)/2p/(p2−1)/2p
or,(1/cosA)/(sinA/cosA)=(p2+1)/(p2−1)
or,1/sinA=(p2+1)/(p2−1)
SinA=(p2−1)/(p2+1)
So the answer is,
SinA=(p2−1)/(p2+1)———————-