if sinA/x=cosA/y then prove that sinA-cosA=x-y/√x²+y²
Answers
Answered by
3
Answer:
sinA/x = cosA/y
or, sinA/cosA =x/y
By addendo- dividendo we get,
or, (sinA + cosA)/(sinA-cosA)= (x+y)/(x-y)…1
Again, sin²A/cos²A= x²/y²
By addendo- dividendo we get,
(sin²A+cos²A)/(sin²A-cos²A) = (x²+y²)/(x²-y²)
or, 1/(sinA+cosA)(sinA-cosA)=(x²+y²)/(x²-y²)
Putting the value of (sinA+cosA) from equation 1, we get
(x-y)/(sinA-cosA)(sinA-cosA)(x+y)=
(x²+y²)/(x²-y²)
or, (sinA-cosA)²= (x-y)(x²-y²)/(x+y)(x²+y²)
or,(sinA-cosA)²= (x-y)²/(x²+y²)
or, sinA-cosA= (x-y)/√(x²+y²)[Proved
Similar questions