Math, asked by tdshital9405, 11 months ago

If sinalpha = 1/2, prove that 3cosalpha-4cosquealpha=0

Answers

Answered by Nereida
2

\huge\star{\green{\underline{\mathfrak{Correct\:Question :-}}}}

If \mapsto\tt{sin\:\alpha =\dfrac{1}{2}}.

Prove : \mapsto\tt{sin\:\alpha =\dfrac{1}{2}}.

\huge\star{\green{\underline{\mathfrak{Answer :-}}}}

Given :

\mapsto\tt{sin\:\alpha =\dfrac{1}{2}}

To Prove :

\mapsto\tt{3\:cos\:\alpha - 4\:{cos}^{3}\:\alpha = 0}

Solution :

\mapsto\tt{sin\:\alpha =\dfrac{1}{2}}

We know that, when angle is 30° then, sin 30° = 1/2.

So, here, \tt{\alpha=30^{\circ}}

Using this in the LHS,

\mapsto\tt{3\:cos\:(30^{\circ})-4\:{cos}^{3}\:(30^{\circ})= 0}

\mapsto\tt{3\:\times\dfrac{\sqrt{3}}{2} - 4\:\times({\dfrac{\sqrt{3}}{2}})^{3}}

\mapsto\tt{3\:\times\dfrac{\sqrt{3}}{2} - 4\:\times\dfrac{3\sqrt{3}}{8}}

\mapsto\tt{\dfrac{3\sqrt{3}}{2}-\dfrac{3\sqrt{3}}{2}}

\huge\mapsto{\boxed{\tt{\green{LHS=RHS=0}}}}

\rule{200}4

Answered by Equestriadash
3

\bf Given:\ \tt sin\ \alpha\ =\ \dfrac{1}{2}.\\\\\\\bf To\ prove:\ \tt 3\ cos\ \alpha\ -\ 4\ cos^3\ \alpha\ =\ 0.\\\\\\\bf Answer:\\\\\\\tt sin\ \alpha\ =\ \dfrac{1}{2}\\\\\\\sf We\ know\ that\ sin\ {30}^{\circ}\ =\ \dfrac{1}{2}.\\\\\\Hence, \alpha\ =\ {30}^{\circ}.\\\\\\\tt 3\ cos\ \alpha\ -\ 4\ cos^3\ \alpha\ =\ 0.\\\\\\\bf Left\ Hand\ Side:\\\\\\\tt 3\ cos\ \alpha\ -\ 4\ cos^3\ \alpha\\\\\\\implies\ 3\ cos\ {30}^{\circ}\ -\ 4\ cos^3\ {30}^{\circ}\\\\\\

\bf cos\ {30}^{\circ}\ =\ \dfrac{\sqrt{3}}{2}.\\\\\\\tt =\ \bigg(3\ \times\ \dfrac{\sqrt{3}}{2}\bigg)\ -\ \bigg(4\ \times\ \bigg[\dfrac{\sqrt{3}}{2}\bigg]^3\bigg)\\\\\\=\ \dfrac{3\sqrt{3}}{2}\ -\ 4\bigg(\dfrac{3\sqrt{3}}{8}\bigg)\\\\\\=\ \dfrac{3\sqrt{3}}{2}\ -\ \dfrac{3\sqrt{3}}{2}\\\\\\=\ 0\\\\\\=\ \bf Right\ Hand\ Side\ (0).

Similar questions