if sin@ + cosec@ =√3 prove that Sin^2@+cosec^2@=1
Answers
Given :
- sin A + cosec A = √3
To prove :
- sin²A + cosec²A = 1
Proof :
As given
→ sin A + cosec A = √3
squaring both sides
→ ( sin A + cosec A )² = ( √3 )²
using algebraic identity
( a + b )² = a² + b² + 2 a b
→ sin²A + cosec²A + 2 sin A cosec A = 3
putting cosec A = 1 / sin A
→ sin²A + cosec²A + 2 sin A ( 1 / sin A ) = 3
→ sin²A + cosec²A + 2 = 3
→ sin²A + cosec²A = 3 - 2
→ sin²A + cosec²A = 1
Proved .
Trigonometric ratios and identities to know :
__________________________
→ Cos² θ + Sin² θ = 1
→ 1 + Tan² θ = Sec² θ
→ 1 + Cot² θ = Cosec² θ
__________________________
→ sin ( 90 - A ) = cos A
→ cos ( 90 - A ) = sin A
→ tan ( 90 - A ) = cot A
→ cot ( 90 - A ) = tan A
→ sec ( 90 - A ) = cosec A
→ cosec ( 90 - A ) = sec A
__________________________
→ cosec A = 1 / sin A
→ sec A = 1 / cos A
→ tan A = 1 / cot A = sin A / cos A
→ cot A = 1 / tan A = cos A / sin A
__________________________
Answer:
SinA+cosecA=v3 is impossible
SinA+cosec A greater than or equal to 2