If sinax +cosbx = 1 then find the value of x
Answers
Answered by
0
- Subtract one of the terms from both sides.
- You get sin(ax)-sin(bx)=0
- Use identity sinA - sinB =2sin[(A-B)/2]cos[(a+b)/2]
- In this case A=ax and B=bx
- Then either sin[(a-b)x/2]=0 or cos[(a+b)x/2]=0
- cos(ax)=cos(bx)
- for this identity a and b would be equallcos(ax)=cos(bx)
- cos(ax)=cos(bx)
Similar questions