if sinC=15/17,then find cosC? Using trigonometric identity
Answers
Answered by
5
sinC = 15 / 17
![\bold{ \: we \: know \: \sin(a) = \frac{height}{hypotenuse} } \bold{ \: we \: know \: \sin(a) = \frac{height}{hypotenuse} }](https://tex.z-dn.net/?f=+%5Cbold%7B+%5C%3A+we+%5C%3A+know+%5C%3A++%5Csin%28a%29+++%3D++%5Cfrac%7Bheight%7D%7Bhypotenuse%7D+%7D)
So,
![\frac{height}{hypotenuse} = \frac{15}{17} \frac{height}{hypotenuse} = \frac{15}{17}](https://tex.z-dn.net/?f=+%5Cfrac%7Bheight%7D%7Bhypotenuse%7D++%3D++%5Cfrac%7B15%7D%7B17%7D+)
Now, Let height = 15 x and hypotenuse = 17x
Using Pythagoras Theorem,
Base = √ { ( 17x )² - ( 15x )² }
base = √ { 289x² - 225x² }
base = √64 x²
Base = 8x
![\mathbf{we \: know \: \: \: \cos(a) = \frac{base}{hypotenuse} } \mathbf{we \: know \: \: \: \cos(a) = \frac{base}{hypotenuse} }](https://tex.z-dn.net/?f=+%5Cmathbf%7Bwe+%5C%3A+know+%5C%3A+++%5C%3A++%5C%3A++%5Ccos%28a%29+%3D+++%5Cfrac%7Bbase%7D%7Bhypotenuse%7D+%7D)
Due to which,
cosC = 8x / 17x
cosC = 8 / 17
So,
Now, Let height = 15 x and hypotenuse = 17x
Using Pythagoras Theorem,
Base = √ { ( 17x )² - ( 15x )² }
base = √ { 289x² - 225x² }
base = √64 x²
Base = 8x
Due to which,
cosC = 8x / 17x
cosC = 8 / 17
Answered by
6
Heya !!
Sin C = 15/17
Using trigonometric identity ,
Sin² theta + Cos² theta = 1
Cos² theta = (1 - Sin² theta)
sin C = 15/17
Cos² C = ( 1 - Sin² C )
Cos² C= 1 - (15/17)²
Cos² C = 1 - 225 / 289
Cos² C = 289 - 225 / 289
Cos² C = 64/289
Cos C = root 64 / root 289
Cos C = 8/17
Sin C = 15/17
Using trigonometric identity ,
Sin² theta + Cos² theta = 1
Cos² theta = (1 - Sin² theta)
sin C = 15/17
Cos² C = ( 1 - Sin² C )
Cos² C= 1 - (15/17)²
Cos² C = 1 - 225 / 289
Cos² C = 289 - 225 / 289
Cos² C = 64/289
Cos C = root 64 / root 289
Cos C = 8/17
Similar questions