If sine + caso = √2cos (90° - 0), find cote.
Answers
Answered by
0
\begin{gathered} \sin( \alpha ) + \cos( \alpha ) = \sqrt{2} \cos( 90 - \alpha ) \\ \\ \sin( \alpha ) + \cos( \alpha ) = \sqrt{2} \sin( \alpha ) \\ \\ \cos( \alpha ) = \sqrt{2} \sin( \alpha ) - \sin( \alpha ) \\ \\ \cos( \alpha ) = \sin \alpha ( \sqrt{2} - 1) \\ \\ \frac{ \cos( \alpha ) }{ \sin( \alpha ) } = ( \sqrt{2} - 1) \\ \\ \cot( \alpha ) = ( \sqrt{2} - 1)\end{gathered}sin(α)+cos(α)=2cos(90−α)sin(α)+cos(α)=2sin(α)cos(α)=2sin(α)−sin(α)cos(α)=sinα(2−1)sin(α)cos(α)=(2−1)cot(α)=(2−1)
Answered by
5
Answer :
cotθ = √2 - 1
Solution :
- Given : sinθ + cosθ = √2cos(90°- θ)
- To find : cotθ = 0
We have ,
=> sinθ + cosθ = √2cos(90°- θ)
=> sinθ + cosθ = √2sinθ
=> cosθ = √2sinθ - sinθ
=> cosθ = (√2 - 1)sinθ
=> cosθ/sinθ = √2 - 1
=> cotθ = √2 - 1
Hence , cotθ = √2 - 1
Similar questions