Math, asked by ashwinishinde20009, 3 months ago

If sine + cos o = √3

then prove that tan + cot = 1​

Answers

Answered by ItzMeMukku
82

\bold{\tan \theta+\cot \theta=1}tanθ+cotθ=1 , If \the\ value\ of\  \bold{\sin \theta+\cos \theta=\sqrt{3}}

Given:

\sin \theta+\cos \theta=\sqrt{3}

To Prove:

\tan \theta+\cot \theta

Proof:

\sin \theta+\cos \theta=\sqrt{3}

Squaring of both sides, we get:

(\sin \theta+\cos \theta)^{2}=(\sqrt{3})^{2}

Using the formula

(a+b)^{2}=a^{2}+b^{2}

Applying formula in

(\sin \theta+\cos \theta)^{2}

\begin{gathered}\begin{array}{l}{\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=3} \\ {\because \sin ^{2} \theta+\cos ^{2} \theta=1}\end{array}\end{gathered}

The value of the

 \sin \theta+\cos \theta=\sqrt{3}

To prove:

tanθ + cotθ = 1

L.H.S

tanθ + cotθ

Transforming the identity of tanθ ; cotθ into

\frac{\sin \theta}{\cos \theta}

\frac{\cos \theta}{\sin \theta}

\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}

\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}

Substituting equation (1) we get

\begin{gathered}\begin{array}{l}{\frac{\sin ^{2} \theta+\cos ^{2} \theta}{1}} \\ {\because \sin ^{2} \theta+\cos ^{2} \theta=1}\end{array}\end{gathered}

∴L.H.S=R.H.S

Hence proved

∴If \bold{\sin \theta+\cos \theta=\sqrt{3}}

\bold{\tan \theta+\cot \theta=1}

Thankyou :)

Answered by mathdude500
7

Appropriate Question :-

\sf \: If \: sinx + cosx =  \sqrt{3}, \: prove \: that \: tanx + cotx = 1

Formula Used :-

\purple{\boxed{ \bf \: {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy}}

\purple{\boxed{ \bf \: {sin}^{2}x+{cos}^{2}x = 1}}

\purple{\boxed{ \bf \:tanx = \dfrac{sinx}{cosx}}}

\purple{\boxed{ \bf \:cotx = \dfrac{cosx}{sinx}}}

\pink{\large\underline{\bf{Solution-}}}

Given that,

\rm :\longmapsto\:sinx + cosx =  \sqrt{3}

On squaring both sides, we get

\rm :\longmapsto\: {(sinx + cosx)}^{2} =  {( \sqrt{3})}^{2}

\rm :\longmapsto\: {sin}^{2}x +  {cos}^{2}x + 2sinxcosx = 3

\rm :\longmapsto\:1 + 2sinxcosx = 3

\rm :\longmapsto\:2sinxcosx = 3 - 1

\rm :\longmapsto\:2sinxcosx = 2

\rm :\longmapsto\:sinxcosx = 1

\red{\bf :\longmapsto\:sinxcosx =  {sin}^{2}x +  {cos}^{2}x}

☆ On dividing by sinx cosx both sides, we get

\rm :\longmapsto\:\dfrac{ {sin}^{2}x +  {cos}^{2}x}{sinxcosx}  = 1

\rm :\longmapsto\:\dfrac{ {sin}^{2}x}{sinxcosx}  + \dfrac{ {cos}^{2}x}{sinxcosx}  = 1

\rm :\longmapsto\:\dfrac{sinx}{cosx}  + \dfrac{cosx}{sinx}  = 1

\rm :\implies\:\purple{\boxed{ \bf \:tanx + cotx = 1}}

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions