Math, asked by uma260246, 10 months ago

. If sine, cose are the roots of 6x2-px+1=0,
then p2 =​

Answers

Answered by Anonymous
13

\red{\underline{\underline{Answer:}}}

\sf{The \ value \ of \ p^{2} \ is \ 48.}

\sf\orange{Given:}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{6x^{2}-px+1=0}}

\sf{\implies{sin\theta \ and \ cos\theta \ are \ the roots}}

\sf\pink{To \ find:}

\sf{The \ value \ of \ p^{2}}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{6x^{2}-px+1=0}}

\sf{Here \ a=6, \ b=-p \ and \ c=1}

\sf{Sum \ of \ roots=\frac{-b}{a}}

\sf{\therefore{sin\theta+cos\theta=\frac{p}{6}...(1)}}

\sf{Product \ of \ roots=\frac{c}{a}}

\sf{\therefore{sin\theta.cos\theta=\frac{1}{6}...(2)}}

\sf{We, \ know \ sin^{2}\theta+cos^{2}\theta=1...(3)}

\sf{According to the identity}

\sf{a^{2}+b^{2}=(a+b)^{2}-2ab}

\sf{sin^{2}\theta=(sin\theta+cos\theta)-2(sin\theta.cos\theta)}

\sf{From \ (1), \ (2) \ and (3)}

\sf{1=(\frac{p}{6})^{2}-2\times\frac{1}{6}}

\sf{1=\frac{p^{2}}{36}-\frac{12}{36}}

\sf{\therefore{p^{2}-12=36}}

\sf{\therefore{p^{2}=36+12}}

\sf{\therefore{p^{2}=48}}

\sf\purple{\tt{\therefore{The \ value \ of \ p^{2} \ is \ 48.}}}

Answered by TheSentinel
31

\purple{\underline{\underline{\pink{\boxed{\boxed{\red{\star{\sf Question:}}}}}}}} \\ \\

\rm{If \ sin\theta \ and \ cos\theta \  are \  the \ roots \ of}

\rm{6x^{2}-px+1=0 \ then \ Find \ p^{2}}

_________________________________________

\purple{\underline{\underline{\orange{\boxed{\boxed{\green{\star{\sf Answer:}}}}}}}} \\ \\

\rm{\blue{\boxed{\pink{\star{ p^{2} \ \implies \ 48.}}}}} \\

_________________________________________

\sf\large\underline\pink{Given:} \\ \\

\rm{The \ given \ quadratic \ equation \ is}

\rm{\longrightarrow{6x^{2}-px+1=0}}

\rm{\longrightarrow{sin\theta \ and \ cos\theta \ are \ the roots}}

_________________________________________

\sf\large\underline\blue{To \ Find} \\ \\

\rm{The \ value \ of \ p^{2}}

_________________________________________

\green{\underline{\underline{\red{\boxed{\boxed{\purple{\star{\sf Solution:}}}}}}}} \\ \\

\rm{The \ given \ quadratic \ equation \ is}

\rm{\longrightarrow{6x^{2}-px+1=0}} \\

\rm{Here \ a=6, \ b=-p \ and \ c=1} \\

\rm{We \ know,}

\rm{Sum \ of \ roots=\frac{-b}{a}} \\

\rm{\implies{sin\theta+cos\theta=\frac{p}{6}...(a)}} \\

\rm{And,} \\

\rm{Product \ of \ roots=\frac{c}{a}} \\

\rm{\implies{sin\theta.cos\theta=\frac{1}{6}...(b)}}

\sf{We, \ know \ that}

\rm{ sin^{2}\theta+cos^{2}\theta=1...(c)}

\rm{a^{2}+b^{2}=(a+b)^{2}-2ab}

\rm{sin^{2}\theta=(sin\theta+cos\theta)-2(sin\theta.cos\theta)}

\rm{From \ (a), \ (b) \ and (c)}

\rm\therefore{1=(\frac{p}{6})^{2}-2\times\frac{1}{6}}

\rm\therefore{1=\frac{p^{2}}{36}-\frac{12}{36}} \\

\rm{\implies{p^{2}-12=36}} \\

\rm{\implies{p^{2}=36+12}} \\

\rm{\implies{p^{2}=48}}  \\

\rm{\blue{\boxed{\pink{\star{ p^{2} \ \implies \ 48.}}}}} \\

____________________________________________

\rm\orange{Hope \ it \ helps \ :))}

Similar questions