Math, asked by chitrapinto1971, 2 days ago

If sine theta is equal to 3 by 5 and cos theta is equal to 4 by 5 find the value of sine squared theta plus cos square theta?​

Answers

Answered by karnenakalyani
2

sine theta is equal to=3/5

cos theta is equal to=4/5

sin squared theta+cos square theta=3/5 hole square+4/5 hole square

9/25+16/25

9+16/25=25/25=1

Answered by Teluguwala
30

Appropriate Question :-

If Sin θ is equal to  \displaystyle \frac{3}{5} and Cos θ is equal to  \displaystyle \frac{4}{5}. Find the value of Sin² θ + Cos² θ

 \:

Step-by-step Explanation :-

Given :-

  • Sin θ is equal to  \displaystyle \frac{3}{5} and Cos θ is equal to  \displaystyle \frac{4}{5}.

 \:

To Find :-

  • What is the value of Sin² θ + Cos² θ

  \:

Solution :-

Given :

  •  \bf \: {Sin \:  θ  \:  = \:   \displaystyle  \bf\frac{3}{5} }

 \:

  •  \bf \: {Cos \:  θ  \:  = \:   \displaystyle  \bf\frac{4}{5} }

 \:

 \:  \:  \: ⇢ \:  \:  \:  \bf \: Sin^{2}  \:  \theta  \: +  \: Cos^{2}   \:  \theta

 \:

 \:  \:  \displaystyle \:  \:  \: ⇢ \:  \:  \:  \sf \:  \bigg( \frac{3}{5} \bigg) ^{2}\: +  \:  \bigg( \frac{4}{5} \bigg) ^{2}

 \:

 \:  \:   \:   \displaystyle \:  \:  \: ⇢ \:  \:  \:  \sf \:  \bigg( \frac{9}{25} \bigg) +  \bigg( \frac{16}{25} \bigg)

 \:

  \:  \:  \:   \: \: \displaystyle \:  \:  \: ⇢ \:  \:  \:  \sf  \:  \frac{9 + 16}{25} \:

 \:

 \:  \:  \:  \:  \:  \:  \: \displaystyle \:  \:  \: ⇢ \:  \:  \:  \sf \:  \cancel \frac{25}{25}

 \:

 \:  \:  \:  \:  \:  \:  \:  \: \displaystyle \:  \:  \: ⇢ \:  \:  \:  \sf \:  \bf \red  1

 \:

The value of Sin² θ + Cos² θ is 1 .

 \:

Similar questions