If sino = nsin (thita+2 a) then tan (thita + a)
is equal to
Answers
Answered by
0
Answer:
Correct option is
A
1−n
1+n
tanα
sinθ=nsin(θ+2α)
sin(θ+2α)
sinθ
=n
apply componendo dividendo rule,
sinθ−sin(θ+2α)
sinθ+sin(θ+2α)
=
n−1
n+1
apply sinC+sinD and sinC−sinD
2sinαcos(θ+α)
2sin(θ+α)cosα
=
n−1
n+1
tanα
tan(θ+α)
=
n−1
n+1
tan(θ+α)=
n−1
n+1
tanα
Similar questions