Math, asked by Anonymous, 3 months ago

if SinØ+Sin²Ø = 1, find the value of :-

Cos¹²Ø+3Cos¹⁰Ø+3Cos⁸Ø+Cos⁶Ø+2Cos⁴Ø+2Cos²Ø-2 ​

Answers

Answered by mathdude500
4

Answer:

Question

  • If SinØ + Sin²Ø = 1, find the value of :-
  • Cos¹²Ø + 3Cos¹⁰Ø +3 Cos⁸Ø + Cos⁶Ø + 2Cos⁴Ø +2 Cos²Ø - 2

Answer

Given :-

  • SinØ + Sin²Ø = 1

To Find :-

  • The value of Cos¹²Ø + 3Cos¹⁰Ø +3 Cos⁸Ø + Cos⁶Ø + 2Cos⁴Ø +2 Cos²Ø - 2

Identity used

  • sin²θ + cos²θ = 1
  • (x + y)³ = x³ + y³ + 3xy (x + y)

Solution:-

\bf \:SinØ + Sin²Ø = 1

\bf\implies \:SinØ = 1 -  Sin²Ø

\bf\implies \: SinØ  =  Cos²Ø ......(1)

\bf \:Consider \:</p><p>Cos¹²Ø + 3Cos¹⁰Ø +3 Cos⁸Ø + Cos⁶Ø + 2Cos⁴Ø +2 Cos²Ø - 2

\bf \:put \:  Cos²Ø \:  = SinØ   \: in \: above \: we \: get

\bf\implies \: {(SinØ)}^{6}  + 3 {(SinØ)}^{5}  + 3 {(SinØ)}^{4}  +  {(SinØ)}^{3}  + 2( {(SinØ)}^{2}  + SinØ - 1)

\bf\implies \: {( {(SinØ)}^{2} )}^{3}  +  {(SinØ)}^{3}  + 3 \times SinØ \times  {((SinØ)}^{2} (SinØ + Sin²Ø) + 2(1 - 1)

\bf\implies \: {(SinØ + Sin²Ø)}^{3}

\bf\implies \: {(1)}^{3}  = 1

___________________________________________

Additional Information

Trigonometry Formula's

  • sin θ = Opposite Side/Hypotenuse
  • cos θ = Adjacent Side/Hypotenuse
  • tan θ = Opposite Side/Adjacent Side
  • sec θ = Hypotenuse/Adjacent Side
  • cosec θ = Hypotenuse/Opposite Side
  • cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

The Reciprocal Identities are given as:

  • cosec θ = 1/sin θ
  • sec θ = 1/cos θ
  • cot θ = 1/tan θ
  • sin θ = 1/cosec θ
  • cos θ = 1/sec θ
  • tan θ = 1/cot θ

Co-function Identities

  • sin (90°−x) = cos x
  • cos (90°−x) = sin x
  • tan (90°−x) = cot x
  • cot (90°−x) = tan x
  • sec (90°−x) = cosec x
  • cosec (90°−x) = sec x

Fundamental Trigonometric Identities

  • sin²θ + cos²θ = 1
  • sec²θ - tan²θ = 1
  • cosec²θ - cot²θ = 1
Answered by Anonymous
4

Step-by-step explanation:

Hello Jiya

Good Afternoon

Similar questions