if SinØ+Sin²Ø = 1, find the value of :-
Cos¹²Ø+3Cos¹⁰Ø+3Cos⁸Ø+Cos⁶Ø+2Cos⁴Ø+2Cos²Ø-2
Answers
Answered by
4
Answer:
★Question★
- If SinØ + Sin²Ø = 1, find the value of :-
- Cos¹²Ø + 3Cos¹⁰Ø +3 Cos⁸Ø + Cos⁶Ø + 2Cos⁴Ø +2 Cos²Ø - 2
★Answer★
★Given :-
- SinØ + Sin²Ø = 1
★To Find :-
- The value of Cos¹²Ø + 3Cos¹⁰Ø +3 Cos⁸Ø + Cos⁶Ø + 2Cos⁴Ø +2 Cos²Ø - 2
★Identity used
- sin²θ + cos²θ = 1
- (x + y)³ = x³ + y³ + 3xy (x + y)
★Solution:-
___________________________________________
Additional Information
Trigonometry Formula's
- sin θ = Opposite Side/Hypotenuse
- cos θ = Adjacent Side/Hypotenuse
- tan θ = Opposite Side/Adjacent Side
- sec θ = Hypotenuse/Adjacent Side
- cosec θ = Hypotenuse/Opposite Side
- cot θ = Adjacent Side/Opposite Side
◇ Reciprocal Identities
The Reciprocal Identities are given as:
- cosec θ = 1/sin θ
- sec θ = 1/cos θ
- cot θ = 1/tan θ
- sin θ = 1/cosec θ
- cos θ = 1/sec θ
- tan θ = 1/cot θ
◇ Co-function Identities
- sin (90°−x) = cos x
- cos (90°−x) = sin x
- tan (90°−x) = cot x
- cot (90°−x) = tan x
- sec (90°−x) = cosec x
- cosec (90°−x) = sec x
◇ Fundamental Trigonometric Identities
- sin²θ + cos²θ = 1
- sec²θ - tan²θ = 1
- cosec²θ - cot²θ = 1
Answered by
4
Step-by-step explanation:
Hello Jiya
Good Afternoon
Similar questions