Math, asked by akio, 1 year ago

If sinQ =3/5 find the value of (tanQ +secQ)²

Answers

Answered by anoushkamathur2004
3

Answer:

Step-by-step explanation:

Attachments:
Answered by Anonymous
3

Given ,

  \green{\fbox{ \sf  \sin( \theta )   =  \frac{3}{5}  =  \frac{p}{h} }}

By Pythagoras theorem ,

 \sf \hookrightarrow {(h)}^{2}  =  {(p)}^{2}  +  {(b)}^{2}  \\  \\ \sf \hookrightarrow</p><p> {(5)}^{2}  =  {(9)}^{2}  +  {(b)}^{2}  \\  \\ \sf \hookrightarrow</p><p>25 = 9 +  {(b)}^{2} </p><p> \\  \\ \sf \hookrightarrow {(b)}^{2}  = 16 \\  \\ \sf \hookrightarrow </p><p>b = 4 \:  \: units

Thus , the value of base is 4 unit

So ,

\sf \hookrightarrow   {(\tan( \theta)  +  \sec( \theta)  )}^{2}  \\  \\  \sf \hookrightarrow   {(\frac{p}{b}  +  \frac{h}{b}  )}^{2}  \\  \\\sf \hookrightarrow   {( \frac{3}{4} +  \frac{5}{4}  )}^{2}  \\  \\ \sf \hookrightarrow   {(\frac{3 + 5}{4} )}^{2}  \\  \\ \sf \hookrightarrow   {(\frac{8}{4} )}^{2}  \\  \\ \sf \hookrightarrow  {(2)}^{2}  \\  \\ \sf \hookrightarrow  4

Therefore , the required value is 4

Similar questions