Math, asked by venkysharma21, 9 months ago

If sinQ=3/5FIND THE VALUE OF Sec²Q+tan²Q

Answers

Answered by harsh23453
0

Step-by-step explanation:

by pythagerous theorm its sides are (3,4,5,)

secQ=5/4,tan=3/4

sec^2Q+tan^2Q

(5/4)^2+(3/4)^2

25/16+9/16

34/16

Answered by Anonymous
6

Question :

\sf{If\:sinQ=\frac{3}{5},find\: the\: value\:of\:sec^2Q+tan^2Q.}

Solution :

\sf{sinQ=\frac{3}{5}}

We know,

{\boxed{\bold{sinA=\frac{Height}{Hypotenuse}}}}

Here,

  • Height = 3
  • Hypotenuse = 5

✪ Now find the base by using ‘ Pythagoras Theorem '

\sf{Base^2+Height^2=Hypotenuse^2}

\implies\sf{Base^2+3^2=5^2}

\implies\sf{Base^2+9=25}

\implies\sf{Base^2=25-9}

\implies\sf{Base=\sqrt{16}}

\implies\sf{Base=4}

  • Base = 4

We know,

{\boxed{\bold{secA=\frac{Hypotenuse}{Base}}}}

{\boxed{\bold{tanA=\frac{Height}{Base}}}}

  • \sf{secQ=\frac{5}{4}}

  • \sf{tanQ=\frac{3}{4}}

✪ Now find the value of sec²Q + tan²Q

\sf{sec^2Q+tan^2Q}

\sf{Put\:secQ=\frac{5}{4}\:\: and\:\:tanQ=\frac{3}{4}}

\sf{=(\frac{5}{4})^2+(\frac{3}{4})^2}

\sf{=(\frac{25}{16})+(\frac{9}{16})}

\sf{=\frac{25+9}{16}}

\sf{=\frac{34}{16}}

\sf{=\frac{17}{8}}

Therefore, the value of sec²Q + tan²Q is 17/8.

_________________________

Some formulas related to trigonometry :-

• sin²A + cos²A = 1

• 1+tan²A = sec²A

• 1+cot²A = cosec²A

_________________________

Similar questions