Math, asked by yash1956, 1 year ago

if sinQ=4/5 find the value of sinQ.tanQ-1/2tan2Q​

Answers

Answered by sahushobhit225
0

Step-by-step explanation:

HOPE IT HELPS ❣️❣️

PLEASE FOLLOW ME AND MARK AS BRANLIEST....

Attachments:
Answered by payalchatterje
0

Answer:

Required value is \frac{97}{80}

Step-by-step explanation:

We know,

 \tan(q)  =  \frac{ \sin(q) }{ \sqrt{1 -  \sin {}^{2} (q) } }

And

tan(q)  =  \frac{ \frac{4}{5} }{ \sqrt{1 -  \frac{16}{25} } }  =  \frac{ \frac{4}{5} }{ \frac{3}{5} } =  \frac{4}{5}   \times  \frac{5}{3}  =  \frac{4}{3}

And

tan(2q)  =  \frac{2 \tan(q) }{1 -  { \tan{2} (q) }}

\tan(2q)  =  \frac{2 \times  \frac{4}{3} }{1 -  \frac{16}{9} }  =  \frac{ \frac{8}{3} }{ \frac{-7}{9} }  =  \frac{8}{3}  \times  \frac{-9}{7}  =  \frac{-24}{7}  

sinQ.tanQ-1/2tan2Q =  \frac{4}{5} \times  \frac{4}{3}  -  \frac{1}{2}  \times  \frac{-7}{24}  =  \frac{16}{15}  + \frac{7}{48}  =  \frac{ 291}{240} = \frac{97}{80}

Required value is \frac{97}{80}

Similar questions