If sinQ+cosQ=root3 prove that tanQ+cotQ=1
Answers
Answered by
3
Step-by-step explanation:
sinQ+cosQ=root3
...Squaring both sides we get
(sinQ+cosQ) 2=(root3)2
sinQ2+2sinQ*cosQ+cosQ2=3
1+2sinQ*cosQ=3
2sinQ*cosQ=2
sinQ*cosQ=1 ..........(1)
tanQ+cotQ=sinQ/cosQ+cosQ/sinQ
=sinQ2+cosQ2/sinQ*cosQ
=1/1 .......from (1)
=1=hence proved
It's easy to understand
Similar questions