if sinteta+costeta =root2 then evaluate tantheta +cot tetha
Answers
Answered by
6
Hello friend....
here given ...
sin θ + cos θ = √2
we have to find
tanθ + cot θ =?
solution:-
sin θ + cos θ = √2
now square on both side
= ( sin θ + cos θ )² = √2²
= (sin² θ + cos² θ )+ 2 sin θ cos θ = 2
= 1+ 2sin θ cos θ = 2
=> sin θ cos θ = 1/2
now
tanθ + cot θ =sin θ/cos θ + cos θ/sin θ
=( sin² θ +cos² θ) / sin θ cos θ
= 1 / (1/2) = 2 answer
♦♦ hope it helps ♦
here given ...
sin θ + cos θ = √2
we have to find
tanθ + cot θ =?
solution:-
sin θ + cos θ = √2
now square on both side
= ( sin θ + cos θ )² = √2²
= (sin² θ + cos² θ )+ 2 sin θ cos θ = 2
= 1+ 2sin θ cos θ = 2
=> sin θ cos θ = 1/2
now
tanθ + cot θ =sin θ/cos θ + cos θ/sin θ
=( sin² θ +cos² θ) / sin θ cos θ
= 1 / (1/2) = 2 answer
♦♦ hope it helps ♦
sirigiricharitha123:
please mark as brainliest please
Answered by
1
Hey, check the attachment please
Attachments:
Similar questions