if sintheta–costheta=0 then the value of sin⁴theta+cos⁴theta is
Answers
Step-by-step explanation:
sin theta - cos theta =0
sintheta=costheta
therefore theta=45
sin⁴45+cos⁴45=
(1/√2)⁴+(1/√2)⁴=
1/4+1/4=1/2
pls bro mark it as brainliest
Step-by-step explanation:
Given :-
Sin θ - Cos θ = 0
To find :-
Fond the value of Sin⁴θ + Cos⁴θ ?
Solution :-
Method-1:-
Given that
Sin θ - Cos θ = 0
=>Sin θ = Cos θ
=> Sin θ = 1×Cos θ
=> Sin θ/Cos θ = 1
=> Tan θ = 1
=> Tan θ = Tan 45°
=> θ = 45°
Now,
Sin⁴θ + Cos⁴ θ
=> (Sin 45°)⁴ + (Cos 45°)⁴
=> (1/√2)⁴+(1/√2)⁴
=> (1/4)+(1/4)
=> (1+1)/4
=> 2/4
=> 1/2
Method -2:-
Given that
Sin θ - Cos θ = 0
=>Sin θ = Cos θ
=> Sin θ = 1×Cos θ
=> Sin θ/Cos θ = 1
=> Tan θ = 1
=> Tan θ = Tan 45°
=> θ = 45°
Now,
Sin⁴θ + Cos⁴ θ
We know that
Sin⁴θ+ Cos⁴θ = 1-2Sin² θ Cos²θ
=> 1-2(1/√2)²(1/√2)²
=> 1-2(1/2)(1/2)
=> 1-2(1/4)
=> 1-(2/4)
=> 1-(1/2)
=> (2-1)/2
=> 1/2
Answer:-
The value of Sin⁴θ + Cos⁴ θ for the given problem is 1/2
Used formulae:-
→ Sin⁴θ+ Cos⁴θ = 1-2Sin² θ Cos²θ
→ Sin θ/ Cos θ = Tan θ
→ Tan 45° = 1
→ Sin 45° = 1/√2
→ Cos 45° = 1/√2