Math, asked by shauryasemwal7912, 1 year ago

If sintheta +costheta = √2 sin (90 - theta) determine cot theta

Answers

Answered by letshelpothers9
2

Step-by-step explanation:

your answer is in the above attachment

Attachments:
Answered by Anonymous
4

Answer:

 \cot \theta =  \sqrt{2}  + 1

Step-by-step explanation:

Given ,

 \sin \theta +  \cos \theta =  \sqrt{2}  \sin(90 \degree -  \theta)  \\  \\  \implies \sin \theta +  \cos \theta =  \sqrt{2}   \cos \theta \\  \\  \implies \sin \theta =  \sqrt{2}  \cos \theta -  \cos \theta \\  \\  \implies \sin \theta =  \cos \theta( \sqrt{2}  - 1) \\  \\  \implies \frac{ \sin \theta }{ \sqrt{2} - 1 }  =  \cos \theta \\  \\  \implies \frac{1}{ \sqrt{2} - 1 }  =   \frac{ \cos \theta}{ \sin \theta }  \\  \\  \implies \cot \theta =  \frac{1}{ \sqrt{2}  - 1}  \\  \\  \implies \cot \theta =  \frac{ \sqrt{2}  + 1}{( \sqrt{2}  - 1)( \sqrt{2} + 1) }  \\  \\  \implies \cot \theta =  \frac{ \sqrt{2}  + 1}{ { (\sqrt{2}) }^{2}  -  {1}^{2} }  \\  \\  \implies \cot  \theta =  \frac{ \sqrt{2} + 1 }{2 - 1}  \\  \\  \implies \cot \theta =  \sqrt{2}  + 1

Similar questions