Math, asked by angshumartin, 9 months ago

if sintheta+costheta=√2sin(90°-theta) show that cot theta=(√2+1)​

Answers

Answered by MaheswariS
0

\underline{\textsf{Given:}}

\mathsf{sin\theta+cos\theta=\sqrt{2}\,sin(90^{\circ}-\theta)}

\underline{\textsf{To prove:}}

\mathsf{cot\theta=\sqrt{2}+1}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{sin\theta+cos\theta=\sqrt{2}\,sin(90^{\circ}-\theta)}

\mathsf{sin\theta+cos\theta=\sqrt{2}\,cos\theta}

\textsf{Divide bothsides of the equation by}

\mathsf{cos\theta}

\mathsf{tan\theta+1=\sqrt{2}}

\mathsf{tan\theta=\sqrt{2}-1}

\textsf{Taking reciprocals we get}

\mathsf{cot\theta=\dfrac{1}{\sqrt{2}-1}}

\textsf{For rationalizing the denominator}

\mathsf{cot\theta=\dfrac{1}{\sqrt{2}-1}{\times}\dfrac{\sqrt{2}+1}{\sqrt{2}+1}}

\mathsf{cot\theta=\dfrac{\sqrt{2}+1}{\sqrt{2}^2-1^2}}

\mathsf{cot\theta=\dfrac{\sqrt{2}+1}{2-1}}

\mathsf{cot\theta=\dfrac{\sqrt{2}+1}{1}}

\implies\boxed{\mathsf{cot\theta=\sqrt{2}+1}}

Answered by AditiHegde
0

Given:

sintheta+costheta=√2sin(90°-theta)

To find:

if sintheta+costheta=√2sin(90°-theta) show that cot theta=(√2+1)​

Solution:

From given, we have,

sin theta + cos theta = √2 sin(90° - theta)

here, we use the trigonometric property,

sin(90° - theta) = cos theta

sin theta + cos theta = √2 cos theta

sin theta  = √2 cos theta - cos theta

sin theta  = (√2 - 1) cos theta

here, we use the trigonometric ratios

cot theta = cos theta / sin theta

sin theta  = (√2 - 1) cos theta

divide the above equation by sin theta,

sin theta / sin theta  = (√2 - 1) cos theta / sin theta

1 = (√2 - 1) cot theta

cot theta = 1/(√2 - 1)

use the rationalizing property, (1/(√2 - 1) = √2 + 1)

cot theta = √2 + 1

Hence it is shown that, cot theta = √2 + 1

Similar questions