if sintheta+costheta=√2sin(90°-theta) show that cot theta=(√2+1)
Answers
Answered by
0
Answered by
0
Given:
sintheta+costheta=√2sin(90°-theta)
To find:
if sintheta+costheta=√2sin(90°-theta) show that cot theta=(√2+1)
Solution:
From given, we have,
sin theta + cos theta = √2 sin(90° - theta)
here, we use the trigonometric property,
sin(90° - theta) = cos theta
sin theta + cos theta = √2 cos theta
sin theta = √2 cos theta - cos theta
sin theta = (√2 - 1) cos theta
here, we use the trigonometric ratios
cot theta = cos theta / sin theta
sin theta = (√2 - 1) cos theta
divide the above equation by sin theta,
sin theta / sin theta = (√2 - 1) cos theta / sin theta
1 = (√2 - 1) cot theta
cot theta = 1/(√2 - 1)
use the rationalizing property, (1/(√2 - 1) = √2 + 1)
cot theta = √2 + 1
Hence it is shown that, cot theta = √2 + 1
Similar questions
Biology,
4 months ago
Math,
4 months ago
Environmental Sciences,
4 months ago
Math,
9 months ago
English,
9 months ago
Economy,
1 year ago
Computer Science,
1 year ago