if sintheta+costheta=p and sectheta +cosectheta= q then prove that q(psquare-1)=2p
Answers
Answered by
1
given that
sin theta + cos theta = p
sec theta + cosec theta = q
.............. answer in pic
sin theta + cos theta = p
sec theta + cosec theta = q
.............. answer in pic
Attachments:
Answered by
0
Answer:
SinA + cosA=p
secA+cosecA=q..........(1)
To prove:q(p^2-1)=2p........ (2)
Step-by-step explanation:
Substitute(1)in(2)
(secA+cosecA)[(sinA+cosA)^2-1]
=(secA+cosecA)(sin2A+cos2A+2sinAcosA-1)
=(1/sinA+1/cosA)(2sinAcosA)
[(SinA+cosA)/sinAcosA](2sinAcosA)
=(sinA+cosA)*2=2p
Hence proved.
You have to just substitute the equation that's all.
Similar questions