Math, asked by ktripathi102131, 1 year ago

if sintheta +costheta =x then show that sin ^8theta +cos^8theta =4-3(x^2-1)^2/4

Answers

Answered by anki93080
6
this may be helpful for you
Attachments:
Answered by aquialaska
3

Answer:

Given:

sin\,\theta+cos\,\theta=x

To Show: sin^6\,\theta+cos^6\,\theta=\frac{4-3(x^2-1)^}{4}

Consider,

sin\,\theta+cos\,\theta=x

Square both sides.

(sin\,\theta+cos\,\theta)^2=x^2

using identity , ( a + b )² = a² + b² + 2ab  

sin^2\,\theta+cos^2\,\theta+2\,sin\,\theta\,cos\,\theta=x^2

1+2\,sin\,\theta\,cos\,\theta=x^2

2\,sin\,\theta\,cos\,\theta=x^2-1

sin\,\theta\,cos\,\theta=\frac{x^2-1}{2} ...................(1)

Now Consider,

LHS

=sin^6\,\theta+cos^6\,\theta

=(sin^2\,\theta)^3+(cos^2\,\theta)^3

using identity, a³ + b³ = ( a + b )( a²  + b² - ab )

=(sin^2\,\theta+cos^2\,\theta)((sin^2\,\theta)^2+(cos^2\,\theta)^2-sin^2\,\theta\:cos^2\,\theta)

=(1)((sin^2\,\theta)^2+(cos^2\,\theta)^2-sin^2\,\theta\:cos^2\,\theta)

=(sin^2\,\theta)^2+(cos^2\,\theta)^2-sin^2\,\theta\:cos^2\,\theta

using, a² + b² = ( a + b )² - 2ab

=(sin^2\,\theta+cos^2\,\theta)^2-2\:sin^2\,\theta\:cos^2\,\theta-sin^2\,\theta\:cos^2\,\theta

=(1)^2-3\:sin^2\,\theta\:cos^2\,\theta

=1-3\:(sin\,\theta\:cos\,\theta)^2

=1-3\:(\frac{x^2-1}{2})^2  ( from (1) )

=1-\frac{3(x^2-1)^2}{2^2}

=\frac{4-3(x^2-1)^2}{4}

=RHS

Hence proved.

Similar questions