if sintheta + sin²theta=1
Prove that cos¹²theta+3cos^10theta +3cos^8theta+cos^6theta-1=0
Pls ans step by step asap
It's urgent
I will mark u as brainliest
Don't spam please
Answers
Answer:
Solution:
We have ,
sin\theta+sin^{2}\theta=1sinθ+sin
2
θ=1
\implies sin\theta = 1-sin^{2}\theta⟹sinθ=1−sin
2
θ
\implies sin\theta = cos^{2}\theta⟹sinθ=cos
2
θ
Now ,
\begin{gathered}cos^{12}\theta+3cos^{10}\theta+3cos^{8}\theta\\+cos^{6}\theta+2cos^{4}\theta+2cos^{2}\theta-2\end{gathered}
cos
12
θ+3cos
10
θ+3cos
8
θ
+cos
6
θ+2cos
4
θ+2cos
2
θ−2
=\begin{gathered}(cos^{12}\theta+3cos^{10}\theta+3cos^{8}\\\theta+cos^{6}\theta)+2(cos^{4}\theta+cos^{2}\theta-1)\end{gathered}
(cos
12
θ+3cos
10
θ+3cos
8
θ+cos
6
θ)+2(cos
4
θ+cos
2
θ−1)
= \begin{gathered}[(cos^{4}\theta)^3+3\times(cos^{4}\theta)^{2}\times(cos^{2}\theta)+\\ 3\times(cos^{4}\theta)\times(cos^{2}\theta)^{2}+(cos^{2}\theta)^{3}]\\+2(cos^{4}\theta+cos^{2}\theta-1)\end{gathered}
[(cos
4
θ)
3
+3×(cos
4
θ)
2
×(cos
2
θ)+
3×(cos
4
θ)×(cos
2
θ)
2
+(cos
2
θ)
3
]
+2(cos
4
θ+cos
2
θ−1)
=\begin{gathered}(cos^{4}\theta+cos^{2}\theta)^{3}\\+2(cos^{4}\theta+cos^{2}\theta-1)\end{gathered}
(cos
4
θ+cos
2
θ)
3
+2(cos
4
θ+cos
2
θ−1)
_____________________
Here , we are using the following:
i)cos^{2}\theta = sin\thetacos
2
θ=sinθ
ii) cos^{4}\theta = sin^{2}\thetacos
4
θ=sin
2
θ
_____________________
= \begin{gathered}(sin^{2}\theta+cos^{2}\theta)^{3}\\+2(sin^{2}\theta+cos^{2}\theta-1)\end{gathered}
(sin
2
θ+cos
2
θ)
3
+2(sin
2
θ+cos
2
θ−1)
= 1+2(1-1)1+2(1−1)
=11