Math, asked by paryusha477, 9 months ago

If sintita =3/5 and costita=4/5.find the values sinsquaretita+cossquaretita.

Answers

Answered by Stera
2

Answer

The required value is 1

Given

  \bullet \:  \: \rm \sin  \theta =  \dfrac{3}{5}  \:   \: \: and \:  \:  \:  \cos \theta =  \dfrac{4}{5}

To Find

 \bullet \:  \:  \rm \sin {}^{2}  \theta +  \cos{}^{2} \theta

Solution

Given ,

 \sf \sin   \theta =  \dfrac{3}{5}  \\  \\   \sf\implies {( \sin \theta)}^{2} =  ({ \frac{3}{5}})^{2}   \\  \\   \sf\implies { \sin}^{2}  \theta =  \frac{9}{25}   \:   -  - \longrightarrow(1)

Again ,

  \sf\cos \theta =  \dfrac{4}{5}  \\   \\ \sf  \implies ({ \cos \theta)}^{2}  =  (\frac{4}{5} ) {}^{2}  \\  \\  \sf \implies { \cos }^{2}  \theta =  \frac{16}{25} \:   -   -  \longrightarrow(2)

Adding (1) and (2) we have :

 \sf \sin^{2}  \theta +  { \cos }^{2} \theta =  \dfrac{9}{25}  +  \dfrac{16}{25}  \\  \\  \sf \implies \sin^{2}  \theta +  { \cos }^{2} \theta =  \frac{9 + 16}{25}  \\  \\  \sf \implies \sin^{2}  \theta +  { \cos }^{2} \theta = \frac{25}{25}  \\  \\   \sf \implies \sin^{2}  \theta +  { \cos }^{2} \theta =1

Answered by BrainlyIAS
6

Given ,

sinθ = 3/5

cosθ = 4/5

\implies \bold{sin^2\theta+cos^2\theta}\\\\\implies \bold{(\frac{3}{5} )^2+(\frac{4}{5})^2}\\\\\implies \bold{\frac{9}{25} +\frac{16}{25} }\\\\\implies \bold{\frac{25}{25} }\\\\\implies \bold{1}

\bold{So}\;\;\; \underline{\bold{\bf{\blue{ sin^2\theta+cos^2\theta=1}}}}

More Information :

\underbrace{\bold{\bf{\red{Trigonometric\ Identities :}}}}

  • sin²θ + cos²θ = 1
  • sec²θ - tan²θ = 1
  • cosec²θ - cot²θ = 1

Similar questions