Math, asked by sayyadaifrah, 9 months ago

if sintita =-5/13 and tita is in 3rd quadrant then prove that 5cot²tita+12tantita+13cosectita =0​

Answers

Answered by BrainlyPopularman
9

GIVEN :

  \\ \:  \:  { \huge{.}} \:  \: { \bold{ \sin( \theta)  =  -  \dfrac{5}{13}}}  \\

  \\ \:  \:  { \huge{.}} \:  \: { \bold{  \theta   \:  \: is \:  \: in \:  \: third \:  \: quadrant .}}  \\

TO PROVE :

  \\ \implies { \bold{5 \:  { \cot}^{2} \theta  \:  +  \: 12  \tan( \theta)  + 13  \: cosec( \theta)  = 0}} \\

SOLUTION :

We know that –

  \\ \implies { \bold{ { \sin}^{2} ( \theta) +  { \cos}^{2}( \theta) = 1 }} \\

  \\ \implies { \bold{   { \cos}^{2}( \theta) = 1 - { \sin}^{2} ( \theta) }} \\

  \\ \implies { \bold{   { \cos}( \theta) =  \sqrt{1 - { \sin}^{2} ( \theta) }}} \\

  \\ \implies { \bold{   { \cos}( \theta) =  \sqrt{1 -  \left({ -  \dfrac{5}{13}} \right) ^{2} }}} \\

  \\ \implies { \bold{   { \cos}( \theta) =  \sqrt{1 -  \left({  \dfrac{25}{169}} \right)  }}} \\

  \\ \implies { \bold{   { \cos}( \theta) =  \sqrt{{ \dfrac{169 - 25}{169}}  }}} \\

  \\ \implies { \bold{   { \cos}( \theta) =  \sqrt{{ \dfrac{144}{169}}  }}} \\

  \\ { \bold{ \:  \:  \because \:  \: \theta \:  \: is \:  \: in \:  \: third \:  \: quadrant \:  \: so \:  \:  \cos( \theta) \:  \: will \:  \: be \:  \: negetive. }} \\

  \\ \implies { \bold{   { \cos}( \theta) =   \pm \: {{ \dfrac{12}{13}}  }}} \\

  \\ { \bold{ \:  \:  \therefore \:  \:  \cos( \theta) =  -  \dfrac{12}{13}   }} \\

• Now –

  \\ { \bold{ \:  \:  \longrightarrow \:  \:  \cot( \theta) =  \dfrac{ \cos( \theta) }{ \sin( \theta) }  =  \dfrac{-  \dfrac{12}{13} }{-  \dfrac{5}{13} } =  \dfrac{12}{5} }} \\

  \\ { \bold{ \:  \:  \longrightarrow \:  \:  \tan( \theta) =  \dfrac{ \sin( \theta) }{ \cos( \theta) }  =  \dfrac{-  \dfrac{5}{13} }{-  \dfrac{12}{13} } =  \dfrac{5}{12} }} \\

  \\ { \bold{ \:  \:  \longrightarrow \:  \: cosec( \theta) =  \dfrac{1}{ \sin( \theta) }  =  \dfrac{1}{-  \dfrac{5}{13} } =   - \dfrac{13}{5} }} \\

• Let's take L.H.S. –

  \\ { \bold{ \:  \:   =  \:  \:5 \:  { \cot}^{2} \theta  \:  +  \: 12  \tan( \theta)  + 13  \: cosec( \theta)  }} \\

  \\ { \bold{ \:  \:   =  \:  \:5 \:  { \left( \dfrac{12}{5}  \right)}^{2}  +  \: 12  \left( \dfrac{5}{12}  \right)  + 13  \:  \left( - \dfrac{13}{5} \right) }} \\

  \\ { \bold{ \:  \:   =  \:  \:5 \:  { \left( \dfrac{144}{25}  \right)}  +  5 -  13  \:  \left(  \dfrac{13}{5} \right) }} \\

  \\ { \bold{ \:  \:   =  \:  \:\:  \dfrac{144}{5}   +  5 -  \dfrac{169}{5}  }} \\

  \\ { \bold{ \:  \:   =  \:  \:\:  \dfrac{144 - 169}{5}   +  5}} \\

  \\ { \bold{ \:  \:   =  \:  \:\:  \dfrac{- 25}{5}   +  5}} \\

  \\ { \bold{ \:  \:   =  \:  \:\:  - 5+  5}} \\

  \\ { \bold{ \:  \:   =  \:\: R.H.S. }} \\

  \\ \large \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \: { \bold{ \overbrace{ \underbrace{Hence \:  \: proved}}}} \\

Answered by Anonymous
50

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

 \star{\sf{ sin \theta =  \frac{ - 5}{13} }} \\ \\

{\bf{\blue{\underline{To\:Prove:}}}}

 \star{\sf{ 5 {cot}^{2} \theta + 12tan \theta + 13cosec \theta = 0 }} \\ \\

{\bf{\blue{\underline{Now:}}}}

  • Let a revolving line, starting from OX trace out an XOP = θ, where θ lies in 3rd quadrant.From P, draw PM⊥X'OX.

Now,

 : \implies{\sf{ sin \theta =  \frac{ - 5}{13} }} \\ \\

 : \implies{\sf{  \frac{MP}{OP}  =  \frac{ - 5}{13} }} \\ \\

Let MP = -5 and OP=13

 : \implies{\sf{  {OP}^{2}  =  {MP}^{2}  +  {OM}^{2} }} \\ \\

 : \implies{\sf{  { 13}^{2}  =  {(-5)}^{2}  +  {OM}^{2} }} \\ \\

 : \implies{\sf{ 169= 25 +  {OM}^{2} }} \\ \\

 : \implies{\sf{ 169-25 =  {OM}^{2} }} \\ \\

 : \implies{\sf{ 144 =  {OM}^{2} }} \\ \\

 : \implies{\sf{  \sqrt{144}  =  {OM}}} \\ \\

 : \implies{\sf{  OM =  12}} \\ \\

___________________________________

Now,

  • In third quadrant ,only tanθ and cotθ are positive.

 : \implies{\sf{ cos \theta =  \frac{OM}{MP}  =   \frac{ - 12}{13} }} \\ \\

 : \implies{\sf{ tan \theta =  \frac{5}{12} }} \\ \\

 : \implies{\sf{ tcot \theta =  \frac{12}{5} }} \\ \\

 : \implies{\sf{ Cosec\theta =  \frac{-13}{5} }} \\ \\

___________________________________

 \dagger \underline{\frak{ According \: to \: the \: question : }} \\ \\

 \star{\sf{ 5 {cot}^{2} \theta + 12tan \theta + 13cosec \theta = 0 }} \\ \\

 : \implies{\sf{ 5 \times  \frac{144}{25}  + 12 \times  \frac{5}{12}  + 13 \times  \frac{ - 13}{5} }} \\ \\

 : \implies{\sf{   \frac{144}{5}  + 5  + 13 \times  \frac{ - 13}{5} }} \\ \\

 : \implies{\sf{   \frac{144}{5}  + 5   -  \frac{ 169}{5} }} \\ \\

 : \implies{\sf{   \frac{144 + 25 - 169}{5}  }} \\ \\

 : \implies{\sf{   \frac{-25+ 25 }{5}  }} \\ \\

 : \implies{\sf{   0 }} \\ \\

Hence proved!

Attachments:
Similar questions