Math, asked by XXKINGXX, 11 months ago

if sintita-costita=0 then the value of (sin^4tita+cos^4tita) is​

Answers

Answered by SarcaSticEviL
25

\huge{\mathfrak{\underline{\green{AnSwEr}}}}

\large\sf\to\ sinθ -  cosθ \: = \: 0 \\ \\ \large\sf\to\ sin θ\: = \: 0 + cosθ  \\ \\ \large\sf\to\ sin \: = \: cos

\large\to\sf\frac{sinθ}{cosθ} \: = \:  1 \\ \\ \large\sf\to\  Tanθ \: = \: 1

from this we can conclude that ɪs 45°

Now; we have to find \sf\ sin^4θ + cos^4θ

And from trigonometric ratios,the value of \sf\ sin45° \: = \: \frac{1}{\sqrt{2} } and \sf\ cos45° \: = \: \frac{1}{\sqrt{2} }

\large\sf\to\ (\frac{1}{\sqrt{2} })^4 + (\frac{1}{\sqrt{2} })^4  \: = \: \frac{1}{4} + \frac{1}{4} \: = \: \frac{1}{2}

Similar questions