Math, asked by harshithamadisetty, 1 year ago

If sinx =1/2 then find 1-tanx/1+tanx.

Answers

Answered by brainlyuser1218
1

Step-by-step explanation:

 \frac{1 -  \tan(x) }{1 +  \tan(x ) } \\  \\   \frac{1 -   \frac{ \sin(x) }{ \cos(x) }  }{1 +  \frac{ \sin(x) }{ \cos(x) } }  \\  \\  \frac{? \cos(x -  \sin(x) ) }{ \cos(x) }    \div  \frac{ \cos(x +  \sin(x) ) }{ \cos(x) }  \\  \\  \frac{1}{ \cos}  \times  \frac{  \cos}{1}  \\  \\  = 1

Answered by brainlyuser199
0

Since sin x = 1/2 -> x = 30°....

so tan x = 1/√3 (tan 30° = 1/√3)

-> (1 - 1/√3) / (1 + 1/√3)

-> (√3 - 1 /√3) / (√3 + 1/√3)            LCM

-> (√3-1 / √3) * (√3 /√3 + 1)

-> √3 - 1 / √3 + 1

Rationalise the denominator.

(√3 - 1 / √3 + 1) * (√3 - 1 / √3 - 1)

(√3-1)² / 3-1

(3- 2√3 + 1) / 2

4 -2√3 / 2

4/2 - 2√3/ 2

= 2 -√3

Similar questions