If sinx= 12/13 and y=4/5, where pi/2 greater than x greater than pi, find the value of sin (x+y).Brainly
Answers
We know that ,
sin ( x + y ) = sin x * cos y + cos x * sin y
but ,
sin X = 12 -------------- 1)
13
sin y = 4 -------------- 2)
5
π < X < π ,. :. X lies in 2nd quadrant .
2
:. sin^2 X + cos^2 X = 1
:. cos^2 X = 1 - sin^2 X
= 1 - ( 12 )^2
( 13 )^2
= 1 - 144
169
= 169 - 144
169
:. cos^2 x = 25
169
taking sq. rt.,
:. cos X = - 5
13
------ ( as X lies in 2nd quadrant ,
cos is - ve. )
NOW,
:. sin^2 y + cos^2 y =1
:. cos^2 y = 1 - sin^2 y
= 1 - ( 4 )^2
( 5 )^2
= 1 - 16
25
= 25 - 16
25
:. cos^2 y = 9
25
taking sq. rt.
:. cos y = - 3
5
------ ( as X lies in 2nd quadrant ,
cos is - ve. )
FINALLY ,
sin ( X + y ) = sin X * cos y + cos X * sin y
= 12 * -3 + -5 * 4
13 5 13 5
= -36 + -20
65 65
= -36-20
65