If sinx = Asin(x+y). Then find the value of tan(x+y)
a) siny/(siny-A)
b) sinxcosx/(Acosy-sin²x)
c) sinxcosx/(Acosy+sin²x)
d) sinx/(cosx-A)
Answers
Answered by
1
Answer:
sin(x+y)/sin(x-y) = (a+b)/(a-b) =>
(sinxcosy+cosxsiny)/(sinx.cosy-cosxsiny)
= (a+b)/(a-b) . Dividing both numerator and the denominator of LHS with cosx.cosy we get
(tanx+tany)/(tanx- tany)= (a+b)/(a-b)
Using componendo dividendo rule we get
{(tanx+tany)+(tanx- tany)}{tanx+tany)-(tanx-tany)}={(a+b)+(a-b)}/{(a+b)-(a-b)}
=2tanx/2tany = 2a/2b
=> tanx/tany = a/b
Answered by
0
Answer:
Yeah I am from Ap
can I get u r intro bro
Similar questions