Math, asked by sumalathabethi84, 6 days ago

If sinx + cosecx = -2, then for a positive integer n, sin^n.x + cosec^n.x is
a) 2 b) -2
c) -2 if n is odd and 2{if n is even} d) none

Answers

Answered by varadad25
6

Answer:

\displaystyle{\boxed{\red{\sf\:\sin^n\:x\:+\:cosec^n\:x\:=\:-\:2\:}}}

Option b) - 2

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:\sin\:x\:+\:cosec\:x\:=\:-\:2}

We have to find the value of

\displaystyle{\sf\:\sin^n\:x\:+\:cosec^n\:x} for a positive integer n.

Now,

\displaystyle{\sf\:\sin\:x\:+\:cosec\:x\:=\:-\:2}

We know that,

\displaystyle{\boxed{\pink{\sf\:cosec\:x\:=\:\dfrac{1}{\sin\:x}\:}}}

\displaystyle{\implies\sf\:\sin\:x\:+\:\dfrac{1}{\sin\:x}\:=\:-\:2}

\displaystyle{\implies\sf\:\dfrac{\sin^2\:x\:+\:1}{\sin\:x}\:=\:-\:2}

\displaystyle{\implies\sf\:\sin^2\:x\:+\:1\:=\:-\:2\:\sin\:x}

\displaystyle{\implies\sf\:\sin^2\:x\:+\:2\:\sin\:x\:+\:1\:=\:0}

\displaystyle{\implies\sf\:\sin^2\:x\:+\:\sin\:x\:+\:\sin\:x\:+\:1\:=\:0}

\displaystyle{\implies\sf\:\sin\:x\:(\:\sin\:x\:+\:1\:)\:+\:1\:(\:\sin\:x\:+\:1\:)\:=\:0}

\displaystyle{\implies\sf\:(\:\sin\:x\:+\:1\:)\:(\:\sin\:x\:+\:1\:)\:=\:0}

\displaystyle{\implies\sf\:(\:\sin\:x\:+\:1\:)\:=\:0}

\displaystyle{\implies\sf\:\sin\:x\:+\:1\:=\:0}

\displaystyle{\implies\sf\:\sin\:x\:=\:-\:1}

\displaystyle{\implies\sf\:-\:\sin\:x\:=\:1}

We know that,

\displaystyle{\boxed{\blue{\sf\:\sin\:(\:-\:x\:)\:=\:-\:\sin\:(\:x\:)\:}}}

\displaystyle{\sf\:\sin\:\left(\:\dfrac{\pi}{2}\:\right)\:=\:1}

\displaystyle{\implies\sf\:\sin\:(\:-\:x\:)\:=\:\sin\:\left(\:\dfrac{\pi}{2}\:\right)}

\displaystyle{\implies\sf\:\arcsin\:(\:\sin\:(\:-\:x\:)\:)\:=\:\arcsin\:\left(\:\sin\:\left(\:\dfrac{\pi}{2}\:\right)\:\right)}

\displaystyle{\implies\sf\:-\:x\:=\:\dfrac{\pi}{2}}

\displaystyle{\implies\:\boxed{\orange{\sf\:x\:=\:-\:\dfrac{\pi}{2}\:}}}

Now,

\displaystyle{\sf\:\sin\:\left(\:-\:\dfrac{\pi}{2}\:\right)\:=\:-\:1}

\displaystyle{\therefore\:\boxed{\green{\sf\:\sin\:x\:=\:-\:1}}}

\displaystyle{\sf\:cosec\:\left(\:-\:\dfrac{\pi}{2}\:\right)\:=\:\dfrac{1}{\sin\:\left(\:-\:\dfrac{\pi}{2}\:\right)}}

\displaystyle{\implies\sf\:cosec\:\left(\:-\:\dfrac{\pi}{2}\:\right)\:=\:\dfrac{1}{-\:1}}

\displaystyle{\implies\sf\:cosec\:\left(\:-\:\dfrac{\pi}{2}\:\right)\:=\:-\:1}

\displaystyle{\therefore\:\boxed{\purple{\sf\:cosec\:x\:=\:-\:1}}}

Now, we have to find the value of

\displaystyle{\sf\:\sin^n\:x\:+\:cosec^n\:x}

\displaystyle{\implies\sf\:(\:\sin\:x\:)^n\:+\:(\:cosec\:x\:)^n}

\displaystyle{\implies\sf\:(\:-\:1\:)^n\:+\:(\:-\:1\:)^n}

For a positive integer n, ( - 1 )ⁿ is always - 1.

\displaystyle{\implies\sf\:(\:-\:1\:)\:+\:(\:-\:1\:)}

\displaystyle{\implies\sf\:-\:1\:-\:1}

\displaystyle{\implies\sf\:-\:2}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:\sin^n\:x\:+\:cosec^n\:x\:=\:-\:2\:}}}}

Answered by talpadadilip417
1

Step-by-step explanation:

 \blue{ \text{Since, \( \tt \sin x+\operatorname{cosec} x=2 \) }}

 \color{red} \pmb{\[ \begin{aligned} \Rightarrow  & \sin x+\frac{1}{\sin x} =2 \\ \Rightarrow & \sin ^{2} x-2 \sin x+1 =0 \\ \Rightarrow &(\sin x-1)^{2} =0 \\ \Rightarrow & \sin x =1 \\ \text { Now, } \quad & \sin ^{n} x+\operatorname{cosec}^{n} x &=\sin ^{n} x+\frac{1}{\sin ^{n} x} \\ &=1+1=2 \end{aligned} \]}

Similar questions