if sinx+cosx=0, then find the value of sin^4x+cos^4x
Answers
Answered by
0
Sin⁴x + Cos⁴x =
( Sin²x + Cos²x )² - 2 ( Sinx × Cos x )²
Becoz ( a⁴ + b⁴ ) = ( a² + b² )² - 2( ab )²
Sin⁴x + Cos⁴x =
1² - 2 Sin²x × Cos²x
Becoz ( Sin²x + Cos²x ) = 1
Sin⁴x + Cos⁴x =
1 - 2 Sin²x ( 1 - Sin²x )
Sin⁴x + Cos⁴x =
1 - 2Sin²x + 2 Sin⁴x
OR
Sin⁴x + Cos⁴x =
1 - 2 Cos²x + 2 Cos⁴x
Similar questions