English, asked by aditirajput8816, 7 months ago

if sinx+cosx=0and x lies in fourth quadrant then find sinx and cosx​

Answers

Answered by Anonymous
3

 \bold  {\huge {\mathfrak {\underline{Hello!}}}}

 \star  \:  \: \underline \blue{Solution} \:  \:  \star

(sin x + cosx) = 0

 \longrightarrow {(sin \: x +  cos \: x)}^{2}  = 0

 \longrightarrow  {sin}^{2} x +  {cos}^{2} x + 2 \: sinx \: cosx = 0

 \longrightarrow1 + 2 \: sinx \: cosx = 0

  \longrightarrow \: sin2x =  - 1

 \longrightarrow \: sin 2x = sin\frac{3\pi}{2}

 \longrightarrow \: 2x = \frac{3\pi}{2}

 \longrightarrow \: x =  \frac{3\pi}{4}

Hance,

 \boxed {\mathtt{sin \frac{3 \pi}{4}  =  \frac{1}{ \sqrt{2} } }}

 \boxed{ \mathtt{cos \:  \frac{3\pi}{4}  =  -  \frac{1}{ \sqrt{2} } }}

Similar questions