Math, asked by Ishan8545, 11 months ago

If sinx+cosx =1/5 and 0≤x<π, then tanx isplease i want it step by step

Answers

Answered by rishu6845
7

Answer:

tanx \:  =  -  \dfrac{4}{3}  \: or \:  -  \dfrac{3}{4}

Step-by-step explanation:

Given---->

sinx \:  +  \: cosx \:  =  \dfrac{1}{5}  \:  \:  \: and \:  \:  0 \leqslant x \leqslant \pi

To find ---->

value \: of \: tanx

Concept used --->

1)

 {(a + b)}^{2} \:  =  {a}^{2}   +  {b}^{2} + 2ab

2)

 {sin}^{2}x +  {cos}^{2}x = 1

3)

sin2x = 2 \: sinx \: cosx

4)

sin2x   =  \dfrac{2 \: tanx}{1  +  {tan}^{2} x}

Solution----> ATQ,

sinx + cosx \:  =  \dfrac{1}{5}

squaring \: both \: sides \: we \: get

 {( \: sinx + cosx \: )}^{2}  =  {(  \dfrac{1}{5}) }^{2}

 =  &gt;  {sin}^{2}x +  {cos}^{2} x + 2 \: sinx \: cosx \:  =  \dfrac{1}{25}

 =  &gt; 1 \:  + sin2x \:  =  \dfrac{1}{25}

 =  &gt;  \:  \: sin2x \:  =  \dfrac{1}{25}  - 1

 =  &gt;  \dfrac{2tanx}{1 +  {tan}^{2}x }  \:  =  -  \dfrac{24}{25}

 =  &gt;  \dfrac{tanx}{1 +  {tan}^{2}x} =  -  \dfrac{12}{25}

 =  &gt; 25 \: tanx \:  =  - 12 - 12 {tan}^{2}x

 =  &gt; 12 {tan}^{2} x + 25tanx + 12 \:  = 0

 =  &gt; 12 {tan}^{2} x + 16 \: tanx  + 9 \: tanx \:  + 12 = 0

 =  &gt; 4tanx(3tanx + 4) + 3(3tanx + 4) = 0

 =  &gt; ( \: 3 \: tanx + 4 \: ) \: (4tanx \:  + 3 \: ) \:  = 0

if \:  \: 3tanx \:  + 4 \:  = 0

tanx \:  =  -  \dfrac{4}{3}

if \:  \: 4tanx \:  + 3 \:  = 0

tanx \:  =  -  \dfrac{3}{4}

Similar questions