Math, asked by bybhunesh, 1 year ago

if sinx + cosx =17/13 
then sinx-cosx=

Answers

Answered by sweetysiri92
26
squaring on both sides
sin²2A+cos²2A+2sinAcosA=289/169
1+2sinAcosA=289/169
2sinAcosA=289/169-1
2sinAcosA=120/169
sinAcosA=60/169
now
sinA-cosA=root(sinA-cosA)²
sinA-cosA=root(sin²2A+cos²2A-2sinAcosA)
sinA-cosA=root(1-2SinacosA)
sinA-cosA=root(1-2*60/169)
sinA-cosA=root(49/169)
sinA-cosA=7/13
hence the answer of sinA-cosA=7/13
Answered by wifilethbridge
8

Answer:

sinx-cosx=\frac{7}{13}

Step-by-step explanation:

Given : sinx + cosx =\frac{17}{13}

To Find : sinx - cos x

Solution :

sinx + cosx =\frac{17}{13}

Squaring on both sides

sin^2x+cos^2x+2sinxcosx=\frac{289}{169}

Identity : sin^2x +Cos^2x = 1

1+2sinxcosx=\frac{289}{169}

2sinxcosx=\frac{289}{169}-1

2sinxcosx=\frac{120}{169}

sinxcosx=\frac{60}{169}

we can rewrite

sinx-cosx=\sqrt{(sinx-cosx)^2}

sinx-cosx=\sqrt{sin^2x+cos^2x-2sinxcosx}

sinx-cosx=\sqrt{1-2sinxcosx}

sinx-cosx=\sqrt{1-\frac{120}{169}}

sinx-cosx=\sqrt{\frac{49}{169}}

sinx-cosx=\frac{7}{13}

Hence sinx-cosx=\frac{7}{13}

Similar questions