Math, asked by sasmitap, 9 months ago

If sinx+cosx = a, then |sinx–cosx|=?​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \sin(x)  +  \cos(x)  = a

  \implies \{\sin(x)  +  \cos(x) \} ^{2}   = a^{2}

  \implies\sin^{2} (x)  +  \cos ^{2} (x)  + 2 \sin(x)   \cos(x)   = a^{2}  \\

  \implies1 + 2 \sin(x)   \cos(x)   = a^{2}  \\

  \implies 2 \sin(x)   \cos(x)   = a^{2} - 1  \\

Now,

 | \sin(x)  -   \cos(x)  |  =  \sqrt{ \{  \sin(x) -  \cos(x)  \} ^{2} }  \\

 \implies | \sin(x)  -   \cos(x)  |  =  \sqrt{  \sin^{2} (x) +   \cos^{2} (x)   - 2 \sin(x)  \cos(x) }  \\

 \implies | \sin(x)  -   \cos(x)  |  =  \sqrt{1  -( {a}^{2}  - 1)}  \\

 \implies | \sin(x)  -   \cos(x)  |  =  \sqrt{1  -{a}^{2}   + 1)}  \\

 \implies | \sin(x)  -   \cos(x)  |  =  \sqrt{2 -{a}^{2}  }  \\

Similar questions