if sinx ,cosx are the roots of t^2 -pt + q =0 then show that sin^3+cos ^3=p ^3_3pq
Answers
Given: sinx ,cosx are the roots of t^2 -pt + q =0
To find: Prove that sin^3x + cos^3x = (p/q)^3 - 3p
Solution:
- Now we have given the equation t^2 -pt + q =0
- The roots are: sinx ,cosx
- So sum of roots is:
sin x + cos x = - (-p)/q .............(i)
- Product of roots is:
sin x cos x = q .....................(ii)
- Now we have given sin^3x + cos^3x = (p/q)^3 - 3p
- Consider LHS, we have:
sin^3x + cos^3x = (sin x + cos x) (sin^2 x + cos^2 x - sin x cos x)
- Now adding and subtracting 2 sin x cos x in second bracket, we get:
sin^3x + cos^3x = (sin x + cos x) (sin^2 x + cos^2 x - sin x cos x + 2sin x cos x - 2sin x cos x )
- Rearranging the terms, we get:
sin^3x + cos^3x = (sin x+cos x) (sin^2 x+cos^2 x+2sin x cosx-3sinxcosx )
sin^3x + cos^3x = (sin x+cos x) ( (sin x + cos x)^2 - 3sin x cos x )
- Now putting (i) and (ii) in above equation, we get:
sin^3x + cos^3x = (p/q) ((p/q)^2 - 3(q))
sin^3x + cos^3x = (p/q)^3 - 3q(p/q)
sin^3x + cos^3x = (p/q)^3 - 3p
Answer:
So we proved that sin^3x + cos^3x = (p/q)^3 - 3p
Step-by-step explanation:
use (a+b)^3 formula then u can get the correct proof of it. hope u got the answer