If sinx +cosx=c then sin^6x+cos^6x=?
Answers
Answered by
3
hope it helps,any doubt then comment
Attachments:
Answered by
1
Answer: (1 + 6c2 - 3c4)/4
Step-by-step explanation:
(sin x + cos x)2 = sin2 x + cos2 x + 2(sin x)(cos x)
⇨ (sin x + cos x)2 = 1 + 2(sin x)(cos x)
⇨ c2 = 1 + 2(sin x)(cos x)
⇨ (sin x)(cos x) = (c2 - 1)/2
Now, Using the identity
a3 + b3 = (a + b)(a2 − ab + b2), we have
(sin2 x)3 + (cos2 x)3 = (sin2 x + cos2 x)(sin4 x + cos4 x - (sin2 x)(cos2 x))
= (sin4 x + cos4 x - ((c2 - 1)/2)2)
Now, (sin2 x + cos2 x)2 = sin4 x + cos4 x + 2(sin2 x)(cos2 x)
⇨ sin4 x + cos4 x = 1 - 2((c2 - 1)/2)2
Using the value of sin4 x + cos4 x, we have
sin6 x + cos6 x = 1 - 2((c2 - 1)/2)2 - ((c2 - 1)/2)2
= 1 - 3(c2 - 1)2/4
= (4 - 3c4 - 3 + 6c2)/4
= (1 + 6c2 - 3c4)/4
Similar questions