If sinx + COSX + tanx + cot x + secx + cosecx = 7 and sin2x =a -b√7, then
ordered pair (a, b) can be,
(A) (6,2)
(B) (8,3)
(C) (22, 8)
(D) (11, 4)
Answers
Answered by
2
option second may be the correct answer
Answered by
1
Answer:
Step-by-step explanation:
sinx+cosx+tanx+secx+cscx+cotx=7
⟹sinx+cosx+sinx/cosx+1/cosx+1/sinx+cosx/sinx=7
⟹(sinx+1cosx)+(cosx+1sinx)+(sinxcosx+cosxsinx)=7
⟹sinxcosx+1cosx+sinxcosx+1sinx+1sinxcosx=7—(A)
Let sin2x=2sinxcosx=p⟹sinxcosx=p2
(A)⟹1+p2cosx+1+p2sinx+2p=7
⟹(1+p2)(sinx+cosxsinxcosx+2p=7
⟹(2+p)((sinx+cosx)p=7p−2p
Assuming p=sin2x2≠0:
(sinx+cosx)=7p−2p+2
Squaring both sides:
sin2x+cos2x+2sinxcosx=(7p−2p+2)2=49p2−28p+4p2+4p+4
⟹1+p=p2+4p+4+48p2−32pp2+4p+4=1+48p2−32pp2+4p+4
⟹p=48p2−32pp2+4p+4
Since p≠0,1=48p−32p2+4p+4
⟹p2+4p+4−48p+32=0
⟹p2−44p+36=0
⟹p=44±442−(4∗1∗36−−−−−−−−−−−−−√2=44±167–√2
⟹p=sin(2x)=22±8√7
∴a=22 and b=8
(C)
Similar questions