Math, asked by dibyanshu05, 1 year ago

If sinx + cosx = (y + 1/y)^1/2, y >0 and x belongs to [0,π]then find the least positive value of x satisfying the given condition ?​

Answers

Answered by IamIronMan0
3

Answer:

 \frac{\pi}{4}

Step-by-step explanation:

y > 0

Use AM - GM inequality

{y +  \frac{1}{y}  \over2} \geqslant  \sqrt{y \times  \frac{1}{y} }  \\ y +  \frac{1}{y}  \geqslant 2

Now it results

 \sin(x) +  \cos(x)  \geqslant  \sqrt{2}

For minimum value of x .

 \frac{1}{ \sqrt{2} }  \sin(x)  +  \frac{1}{ \sqrt{2} }  \cos(x)  \geqslant 1 \\  \sin( \frac{\pi}{4}  + x)  \geqslant 1

It is only possible if

 \sin( \frac{\pi}{4}  + x)   = 1 \\   \frac{\pi}{4}  + x = (4n + 1) \frac{\pi}{2}  \\ x = 2n\pi +  \frac{\pi}{4}

So possible value in [ 0 , π ] is π/4 .

Similar questions