Math, asked by bhumikajindal770, 2 months ago

If sinx + cosx = y, prove that sin^6x + cos^6x = [4-3(y^2-1)^2]/4

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:sinx + cosx = y

Identity used :-

 \red{\rm :\longmapsto\: {x}^{3} +  {y}^{3} =  {(x + y)}^{3} - 3xy(x + y)}

 \red{\rm :\longmapsto\: {sin}^{2}x +  {cos}^{2}x = 1}

 \red{\rm :\longmapsto\: {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy}

Consider LHS

\rm :\longmapsto\: {sin}^{6}x +  {cos}^{6}x

\rm \:  =  \:  \:  {( {sin}^{2} x)}^{3}  +  {( {cos}^{2} x)}^{3}

\rm \:  =  \:  \:  {( {sin}^{2}x +  {cos}^{2}x)}^{3} - 3 {sin}^{2}x {cos}^{2}x( {sin}^{2}x +  {cos}^{2}x)

\rm \:  =  \:  \:  {(1)}^{3} -  3{sin}^{2}x {cos}^{2}x(1)

\rm \:  =  \:  \: 1 - 3 {sin}^{2}x {cos}^{2}x

\bf\implies \: {sin}^{6}x +  {cos}^{6}x=\:  \: 1 - 3 {sin}^{2}x {cos}^{2}x -  - (1)

Now,

Consider RHS

\rm :\longmapsto\:\dfrac{4 - 3 {( {y}^{2}  - 1)}^{2} }{4}

\rm \:  =  \:  \: \dfrac{4 - 3 {( {(sinx + cosx)}^{2}  - 1)}^{2} }{4}

\rm \:  =  \:  \: \dfrac{4 - 3 {(  {sin}^{2}x +  {cos}^{2}x + 2sinxcosx   - 1)}^{2} }{4}

\rm \:  =  \:  \: \dfrac{4 - 3 {(  1+2sinxcosx   - 1)}^{2} }{4}

\rm \:  =  \:  \: \dfrac{4 - 3 {(2sinxcosx   )}^{2} }{4}

\rm \:  =  \:  \: \dfrac{4 - 12 {sin}^{2}x {cos}^{2}x}{4}

\rm \:  =  \:  \: \dfrac{4 (1- 3{sin}^{2}x {cos}^{2}x)}{4}

\rm \:  =  \:  \: 1 - 3 {sin}^{2}x {cos}^{2}x

\bf :\longmapsto\:\dfrac{4 - 3 {( {y}^{2}  - 1)}^{2} }{4} = 1 -  {3sin}^{2}x {cos}^{2}x -  - (2)

From equation (1) and equation (2), we get

\bf :\longmapsto\: {sin}^{6}x +  {cos}^{6}x \:  =  \:  \dfrac{4 - 3 {( {y}^{2}  - 1)}^{2} }{4}

Hence, Proved

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions