If sinx+cosy=a and cosx+siny=b,then tan (x-y)/2 is equal to a. a+b b.a-b c.a+b/a-b da-b/a+b
Answers
Answered by
35
sin x + cos y = a
=> a = sin x + sin (90 - y)
=> a = 2 sin [45 + (x-y)/2 ] * Cos [45 - (x+y)/2 ] --- (1)
sin y + cos x = b
=> b = sin y + sin (90 - x)
=> b = 2 sin [45 - (x-y)/2 ] * cos [ 45 - (x+y)/2 ] ---- (2)
a - b = 2 cos [45 - (x+y)/2] * [ sin{45 +(x-y)/2} + sin{45-(x-y)/2} ]
= 2 cos [45 - (x+y)/2] * 2 Sin {(x-y)/2} * Cos 45 ... (3)
a + b = 2 Cos[45 - (x+y)/2] * 2 sin 45 Cos {(x-y)/2} ...(4)
(a - b)/(a + b) = tan (x-y)/2
=> a = sin x + sin (90 - y)
=> a = 2 sin [45 + (x-y)/2 ] * Cos [45 - (x+y)/2 ] --- (1)
sin y + cos x = b
=> b = sin y + sin (90 - x)
=> b = 2 sin [45 - (x-y)/2 ] * cos [ 45 - (x+y)/2 ] ---- (2)
a - b = 2 cos [45 - (x+y)/2] * [ sin{45 +(x-y)/2} + sin{45-(x-y)/2} ]
= 2 cos [45 - (x+y)/2] * 2 Sin {(x-y)/2} * Cos 45 ... (3)
a + b = 2 Cos[45 - (x+y)/2] * 2 sin 45 Cos {(x-y)/2} ...(4)
(a - b)/(a + b) = tan (x-y)/2
Similar questions