if sinx+sin^2x=1 so find value of cos^12x+3cos^10x
Answers
Answered by
332
i think here something is missing .
if your question
cos^12x+3cos^10x+3cos^8x+cos^6x
you can proceed this ,
sinx + sin^2x =1
sinx =1 - sin^2x =cos^2x
now,
cos^12x+3cos^10x +3cos^8x +cos^6x
=> (cos^4x)^3+3. (cos^4x)^2.cos^2x +3cos^4x.(cos^2x)^2+(cos^2x)^3
=>(sin^2x)^3+3sin^4x.cos^2x+3sin^2x.cos^4x +(cos^2x)^3
=>{sin^2x+ cos^2x}^3 = 1^3 =1
if your question
cos^12x+3cos^10x+3cos^8x+cos^6x
you can proceed this ,
sinx + sin^2x =1
sinx =1 - sin^2x =cos^2x
now,
cos^12x+3cos^10x +3cos^8x +cos^6x
=> (cos^4x)^3+3. (cos^4x)^2.cos^2x +3cos^4x.(cos^2x)^2+(cos^2x)^3
=>(sin^2x)^3+3sin^4x.cos^2x+3sin^2x.cos^4x +(cos^2x)^3
=>{sin^2x+ cos^2x}^3 = 1^3 =1
Answered by
94
sin^2 x + sin x - 1 = 0
sin x = [ √5 - 1] /2 = cos² x
cos⁴ x = (5+1-2√5)/4 = (3 - √5)/2
cos⁸ x = (9+5- 6√5)/4 = (7- 3√5)/2
3 cos¹° x + cos¹² x
= cos⁸ x * (3 cos² x + cos⁴ x)
= (7 - 3√5)/2 * [ 3 (√5 -1)/2 + (3 - √5)/2 ]
= (7 - 3√5)/2 * √5
= (7 √5 - 15)/2
sin x = [ √5 - 1] /2 = cos² x
cos⁴ x = (5+1-2√5)/4 = (3 - √5)/2
cos⁸ x = (9+5- 6√5)/4 = (7- 3√5)/2
3 cos¹° x + cos¹² x
= cos⁸ x * (3 cos² x + cos⁴ x)
= (7 - 3√5)/2 * [ 3 (√5 -1)/2 + (3 - √5)/2 ]
= (7 - 3√5)/2 * √5
= (7 √5 - 15)/2
Similar questions