if sinx +sin2x=1,prove that cos2x+cos4x=1
Answers
Answered by
72
sinx+sin2x=1
or sinx =1-sin2x
=cos2x
Therefore sinx=cos2x........(1)
Therefore sin2x=(cos2x)^2
or sin2x=cos4x.......(2)
Adding equation (1) and (2) we get,
sinx+sin2x=cos2x+cos4x
or cos2x+cos4x=1 (since sinx+sin2x=1)
or sinx =1-sin2x
=cos2x
Therefore sinx=cos2x........(1)
Therefore sin2x=(cos2x)^2
or sin2x=cos4x.......(2)
Adding equation (1) and (2) we get,
sinx+sin2x=cos2x+cos4x
or cos2x+cos4x=1 (since sinx+sin2x=1)
Answered by
0
Answer:
Step-by-step explanation:
Given
sinx +sin²x = 1
To prove
cos²x + = 1
Recall the formula
sin²x + cos²x = 1
Solution
We have, sinx +sin²x = 1
sinx = 1 - sin²x (∵sin²x + cos²x = 1)
sinx = cos²x ----------------------(1)
sin²x = (cos²x)² =
sin²x = ------------------(2)
LHS = cos²x + = sinx + sin²x (from (1) and (2)
= 1 = RHS (from given condition)
∴cos²x + = 1
Hence proved
#SPJ2
Similar questions