if, sinx+siny+sinz = 0 = cosx+cosy+cosz
then the expression
cos(theta-x) +cos(theta-y) +cos(theta-z) for theta belongs to R is,
1) independent of theta but dependent on x, y, z.
2) dependent on theta but independent of x, y, z.
3) dependent on x, y, z and theta.4) independent of x, y, z and theta.
Answers
Answered by
0
Given: sinx + siny + sinz = 0 = cosx + cosy + cosz
To find: cos(θ - x) + cos(θ - y) + cos(θ - z)
Solution:
- We must know that,
- cos(A - B) = cosA cosB + sinA sinB
Now, cos(θ - x) + cos(θ - y) + cos(θ - z)
= cosθ cosx + sinθ sinx + cosθ cosy + sinθ siny + cosθ cosz + sinθ sinz
= cosθ cosx + cosθ cosy + cosθ cosz + sinθ sinx + sinθ siny + sinθ sinz
= cosθ (cosx + cosy + cosz) + sinθ (sinx + siny + sinz)
= cosθ * 0 + sinθ * 0
= 0 + 0
= 0
Answer:
- Option 4 is correct.
- The given expression is independent of x, y, z and θ.
Similar questions